ETUDE DE PHOSPHONATES CYCLANIQUES-4

STRUCTURE CRISTALLINE ET MOLÉCULAIRE DE L'HYDROXY-1 CYCLODODÉCYLPHOSPHONATE DIMÉTHYLIQUE¹

G. SAMUEL et R. WEISS

Laboratoire de Cristallochimie, Institut de Chimie, BP 296/R8, 1, rue Blaise Pascal, 67-Strasbourg, France

(Received in France 5 March 1970; Received in the UK for publication 13 April 1970)

Résumé—L'hydroxy-1 cyclododécylphosphonate diméthylique cristallise dans le système triclinique; le groupe spatial est PI avec Z = 2. Les dimensions de la maille élémentaire sont a = $13 \cdot 10$ Å; b = $11 \cdot 74$ Å; c = $6 \cdot 080$ Å; $\alpha = 109 \cdot 53^{\circ}$; $\beta = 112 \cdot 77^{\circ}$; $\gamma = 87 \cdot 25^{\circ}$. La structure a été résolue par la méthode de l'addition symbolique et affinée par moindres carrés en utilisant des facteurs de température anisotropes jusqu'à un facteur R de $0 \cdot 072$ (R $\omega = 0 \cdot 081$). La conformation du cycle appartient au groupe de symétrie 222. Une étude comparative des conformations de la cyclododécanone et de l'hydroxy-1 cyclododécylphosphonate diméthylique a permis de montrer que très probablement c'était une forme instable de la cyclododécanone qui réagissait lors de la formation du produit étudié. Chaque molécule est liée à son homologue centrosymétrique par deux liaisons hydrogène (2 \cdot 69 Å).

Abstract—Crystals of 1-hydroxycyclododecyl dimethylphosphonate are triclinic with space group PI and Z = 2. The unit cell dimensions are $a = 13 \cdot 10 \text{ Å}$; $b = 11 \cdot 74 \text{ Å}$; $c = 6 \cdot 080 \text{ Å}$; $\alpha = 109 \cdot 53^{\circ}$; $\beta = 112 \cdot 77^{\circ}$; $\gamma = 87 \cdot 25^{\circ}$. The structure was solved by the symbolic addition procedure and refined with anisotropic temperature factors by the least-squares method to a conventional R index of $0.072 \text{ (R}\omega = 0.081)$. The ring has 222 symmetry. A comparative study of the conformations of cyclododecanone and 1-hydroxy-cyclododecyl dimethylphosphonate has shown that it is probably a less stable form of cyclododecanone which reacts during the addition of dimethyl phosphite. Each molecule is bonded to its centrosymmetric homologue through two hydrogen bonds (2.69 Å).

DANS le cadre d'une étude structurale des hydroxyphosphonates diméthyliques dérivés des cycloalcanones, nous avons déterminé la structure cristalline et moléculaire de l'hydroxy-1 cyclododécyl phosphonate diméthylique.

DETERMINATION DE LA STRUCTURE

La structure a été résolue par la méthode de l'addition symbolique⁵ après mise à l'échelle absolue de l'ensemble des mesures au moyen d'une courbe K(s).⁶ Nous avons pris pour hypothèse de départ, le groupe d'espace PI; hypothèse qui s'est trouvée vérifiée par la suite. Les facteurs de diffusion atomique ont été calculés selon une formulation et avec des constantes mentionnées dans une étude précédente.⁴ Un calcul de série de Fourier tridimensionnelle effectué avec la séquence de signes exacte et en prenant pour coefficients les facteurs de structure normalisés E a permis de placer tous les atomes de la molécule. Le facteur de reliabilité correspondant est de 0-39. Trois cycles d'affinements par moindres carrés selon une technique précédemment évoquée,⁴ nous ont conduit à un facteur R de 0·12 (facteurs de température isotropes). Le schéma de pondération était le suivant : $\omega = 0.25$ si $F_0 < 4$ et $F_0 > 100$; $\omega = 1$ si F_0 est compris entre 8 et 40 avec interpolation linéaire entre ces intervalles. A ce

stade de l'affinement un calcul de Fourier différence nous a permis de localiser tous les atomes d'hydrogène de la molécule à l'exception de ceux des groupements méthyles et hydroxy. L'introduction de ces atomes supplémentaires dans un calcul de facteur de structure a fait passer le facteur R à 0-102. Nous avons affecté arbitrairement à chaque atome d'hydrogène un facteur d'agitation thermique isotrope supérieur de 1 Å² à celui de l'atome de carbone auquel il est lié. Enfin, six cycles

<u> </u>	x	Y	Z
P	0.2068 (2)	1.0574 (3)	0.6220 (6)
O 1	0.1239 (5)	1.1001 (7)	0.7330 (13)
O2	0-3218 (5)	1.0404 (6)	0-8197 (12)
O3	0-2405 (6)	1.1492 (7)	0-5186 (14)
O4	0-0600 (5)	0-9261 (7)	0-1855 (12)
C1	0.1639 (9)	0-9070 (10)	0-3671 (21)
C2	0-2413 (8)	0-8771 (10)	0-2180 (19)
C3	0.3640 (8)	0-8683 (10)	0-3727 (20)
C4	0.4235 (8)	0.8033 (12)	0-1889 (21)
C5	0.3891 (9)	0.6691 (11)	0.0604 (21)
C6	0-4296 (9)	0.5974 (12)	0.2432 (23)
C7	0.3606 (13)	0.4742 (13)	0.1414 (26)
C8	0-2384 (11)	0.4825 (12)	0-1179 (25)
C9	0.2297(11)	0.5417 (11)	0.3744 (24)
C10	0.1148(11)	0.5841 (12)	0-3556 (23)
C11	0.0862(9)	0.6934 (11)	0-2681 (21)
C12	0.1505 (8)	0.8122 (10)	0.4742 (20)
C13	0.3762(10)	0.1327(12)	1.0722 (24)
C14	01590 (10)	1.2201 (12)	0-3961 (25)
H21	0-233	0.933	0133
H22	0-200	0-800	0.083
H31	0-400	0.833	0-517
H32	0.400	0-933	0-441
H41	0-483	0-800	0.300
H42	0-400	0-850	0-058
H51	0.433	0-633	-0-092
H52	0.333	0-600	-0.025
H61	0.417	0.650	0-400
H62	0-517	0.608	0.292
H71	0-367	0.433	0.258
H72	0.367	0-458	-0.017
H81	0-200	0-400	0-083
H82	0-200	0-533	-0-017
H91	0-267	0-633	0.458
H92	0-267	0.500	0-542
H101	0.100	0-600	0.533
H102	0-050	0-517	0-233
H111	0-000	0.700	0.208
H112	0.100	0-667	0.100
H121	0.233	0.800	0.583
H122	0.142	0.900	0-650

TABLEAU 1

Les atomes d'hydrogène sont numérotés Hil et Hi2 pour deux atomes liés au carbone Ci.

3952

d'affinement par moindres carrés (facteurs de température anisotropes) en bloquant les positions des atomes d'hydrogène ont ramené le facteur de reliabilité à 0-072 ($R\omega = 0.081$). Au cours du dernier cycle les variations calculées des coordonnées sont toujours inférieures à 0.15σ .¹⁸

Les coordonnées relatives et les facteurs de température des différents atomes sont données dans les Tableaux 1 et 2. Les écarts-type relatifs à ces grandeurs sont indiqués entre parenthèses et portent sur les derniers chiffres des grandeurs auxquelles ils correspondent.

DESCRIPTION DE LA STRUCTURE

La Fig 1 représente la structure de l'hydroxy-1cyclododécylphosphonate diméthylique.⁷ Les longueurs de liaisons et les angles de valence observés dans ce composé sont rassemblés respectivement dans les Tableaux 3 et 4.

FIG 1. L'hydroxy-1 cyclododécylphosphonate diméthylique.

Afin d'étudier la conformation du cycle à douze chaînons dans ce composé, nous avons rassemblé dans le Tableau 5 les valeurs des angles dièdres observées dans l'hydroxy-1 cyclododécylphosphonate diméthylique (noté HPD) et celles observées soit par radiocristallographie soit par analyse énergétique. L'examen du Tableau 5 montre que la conformation du cycle à douze chaînons présent dans la molécule n'est pas significativement différente de celles observées par radiocristallographie et calculées par analyse énergétique. Les travaux d'analyse vibrationnelle de Führer et Gunthard⁸ ont montré que le groupe de symétrie correspondant n'était pas 422 comme une analyse rapide des valeurs mentionnées dans le Tableau 5 pourrait le faire croire et comme on l'avait envisagé de prime abord,⁹ mais 222. Ce résultat est en accord avec les valeurs citées dans le Tableau 5 et en particulier avec celles trouvées dans l'HPD. En effet, l'accord entre les angles dièdres ω (C2C3) et ω (C9C8) [respectivement $\omega(C5C6)$ et $\omega(C11C12)$] est sensiblement meilleur (3° en moyenne) que celui entre $\omega(C8C9)$ et $\omega(C11C12)$ [respectivement $\omega(C2C3)$ et $\omega(C5C6)$] et celui entre ω (C2C3) et ω (C11C12) [respectivement ω (C8C9) et ω (C5C6)] 10° en movenne. Les axes d'ordre 2 passent par le milieu des liaisons C-2 C-3 et C-8 C-9 d'une part et

TABLEAU 2

	$f = f_0 \exp(-(h^2 \beta_{11} + k^2 \beta_{22} + 1^2 \beta_{13} + 2hk\beta_{12} + 2k1\beta_{23} + 2lh\beta_{13}))$									
	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β ₂₃	B (Ų)			
P	0-0034 (2)	0-0074 (4)	0-0147 (14)	0.0007 (2)	0.0048 (5)	0-0042 (5)	2·21			
01	0-0038 (6)	0-0114 (10)	0-0181 (35)	0.0000 (6)	0.0051 (12)	0.0033 (14)	3.23			
O2	0-0040 (7)	0-0088 (9)	0-0094 (34)	0-0007 (6)	0.0023 (12)	0.0020 (14)	2.71			
03	0-0057 (7)	0-0092 (10)	0-0299 (40)	0.0017 (6)	0-0087 (13)	0-0094 (16)	3.19			
O4	0-0024 (6)	0-0125 (11)	0.0120 (33)	0-0017 (6)	0 0001 (12)	0-0076 (14)	2-98			
Cl	0.0053 (11)	0-0067 (14)	0-0206 (56)	0.0011 (9)	0.0081 (22)	0-0034 (22)	2.61			
C2	0-0042 (11)	0-0087 (14)	0-0131 (50)	0.0000 (9)	0.0050 (18)	0-0059 (20)	2.44			
C3	0-0025 (10)	0-0092 (14)	0-0194 (53)	0.0003 (9)	0.0029 (18)	0-0010 (21)	2.93			
C4	0-0037 (10)	0.0127 (19)	0.0204 (57)	0.0020 (11)	0-0042 (19)	0-0062 (26)	3.48			
C5	0-0063 (11)	0-0078 (16)	0-0212 (60)	0.0011 (11)	0.0045 (20)	-0-0004 (25)	3.61			
C6	0-0067 (12)	0-0082 (17)	0-0278 (63)	0.0017 (11)	0-0014 (21)	0-0032 (25)	4 ·12			
C7	0-0142 (18)	0-0096 (19)	0-0372 (73)	0.0045 (14)	0.0083 (27)	0.0062 (28)	5.87			
C8	0-0091 (14)	0.0087 (16)	0-0312 (69)	0.0004 (11)	0.0058 (22)	0-0019 (24)	4.65			
C9	0 0103 (15)	0.0078 (15)	0.0267 (65)	-0.0004(11)	0.0045 (23)	0-0045 (24)	4.45			
C10	0-0969 (14)	0-0088 (17)	0-0295 (64)	-0.0039 (12)	0.0062 (23)	0-0035 (26)	4.48			
C11	0.0057 (11)	0.0070 (15)	0.0268 (59)	-0.0003(10)	0.0056 (20)	0-0040 (25)	3.19			
C12	0-0045 (10)	0-0050 (13)	0-0166 (52)	-0.0015 (9)	0-0022 (18)	0-0024 (22)	2.42			
C13	0-0071 (12)	0-0096 (16)	0-0369 (72)	0-0011 (11)	0-0063 (23)	0-0029 (27)	4 ·52			
C14	0-0080 (13)	0-0122 (18)	0-0437 (72)	0.0005 (12)	0-0059 (24)	0-0132 (29)	4 ∙91			

TABLEAU 3

Р	O1	1.476 (8)	C3	C4	1.577 (17)
Р	O2	1.576 (6)	C4	C5	1.506 (17)
Р	O3	1.572 (10)	C5	C6	1.535 (20)
Ρ	C1	1.850 (9)	C6	C7	1.544 (19)
O2	C13	1.467 (12)	C7	C8	1.554 (23)
O3	C14	1.451 (15)	C8	C9	1.527 (20)
O4	C1	1.448 (11)	C9	C10	1.537 (20)
Cl	C2	1.562 (18)	C10	C11	1.526 (20)
C2	C3	1.537 (13)	C11	C12	1.533 (13)
			C12	Cl	1.512 (19)
C2	H21	0-942	C7	H72	0.954
C2	H22	0-995	C8	H81	1.031
C3	H31	1.034	C8	H82	1.121
C3	H32	0-802	С9	H91	1·067
C4	H41	0-820	C9	H92	1.202
C4	H42	1-057	C10	H101	1.123
C5	H51	1.223	C10	H102	1.038
C5	H52	0-974	C11	H111	1.053
C6	H61	1-018	C11	H112	1.048
C6	H62	1.069	C12	H121	1.060
C7	H71	0-961	C12	H122	1-249

Les longueurs sont exprimées en Å, leur écart-type est indiqué entre parenthèses en millième.

3955

01	Р	02	114.4 (0.4)	Р	O2	C13	121.6 (0.5)
01	Р	O3	113.5 (0.4)	Р	O 3	C14	120-9 (0-6)
01	Р	Cl	113.5 (0.5)	Р	C1	04	102.9 (0.3)
02	Р	03	102.8 (0.4)	Р	C1	C2	111.7 (0.4)
O 2	Р	Cl	104-0 (0-5)	Р	C1	C12	109.7 (0.4)
O3	Р	C1	108-6 (0-5)	O4	C 1	C2	103-5 (0-5)
C12	C1	C2	115.3 (0.6)	C1	C2	C3	116-2 (0-6)
C2	C3	C4	110-2 (0-6)	C3	C4	C5	113-1 (0-7)
C4	C5	C6	113.4 (0.7)	C5	C6	C7	113-1 (0-8)
C6	C7	C8	115-1 (0-8)	C7	C8	С9	112.8 (0.8)
C8	C9	C10	114-1 (0-8)	C9	C10	C11	114.5 (0.7)
C10	C11	C12	112.6 (0.7)	C11	C12	C 1	113-0 (0-7)

TABLEAU 4

Les angles et leur écart-type sont exprimés en degrés.

I	-69*	+ 161	- 69	-68	+155	-67	- 70	+ 163	- 70	- 67	+ 155	- 68
II	- 68	+ 168	- 64	-71	+ 153	-67	- 71	+ 169	-67	- 69	+ 155	- 70
111	- 62	+ 172	- 69	- 69	+ 150	- 74	-63	+ 171	-65	- 68	+154	- 79
IV	- 40	+ 177	- 94	- 65	+134	-65	- 94	+ 177	- 40	- 77	+153	- 77
v	- 70	+ 165	- 70	- 67	+ 156	- 77	- 70	+ 165	- 70	-67	+156	- 67
VI	- 70	+ 166	- 70	-67	+157	-67	- 70	+ 166	- 70	-67	+157	- 67
VII	- 69	+ 166	- 69	- 68	+158	68	- 70	+ 166	- 69	- 67	+ 159	- 69
HPD	- 64†	+164	- 72	- 68	+158	-67	- 64	+ 164	- 70	- 74	+ 155	- 68

TABLEAU 5

I: Cyclododécane⁹

II: Chlorure d'Azacyclododécane¹⁰

III: 2, 12-Dibromocyclododécanone¹¹

IV: Iodure de diméthyl-13,13-aza-13-bicyclo[10.1.0]tridécane¹²

V: Analyse énergétique: K. B. Wiberg¹³

VI: Analyse énergétique: K. B. Wiberg¹³

VII: Analyse énergétique: M. Bixon et S. Lifson¹⁴

HPD: Hydroxy-1 cyclododécylphosphonate diméthylique: ce travail

* Les signes des angles dièdres correspondent à la convention de Klyne et Prelog¹⁵

† Pour l'HPD les angles dièdres sont donnés dans l'ordre suivant: $\omega(C1C2)$, $\omega(C2C3)$... $\omega(C12C1)$

par le milieu des liaisons C-5 C-6 et C-11 C-12 d'autre part. Le troisième axe d'ordre 2 passant évidemment par l'intersection des deux autres, perpendiculairement à leur plan.

Etude comparative des conformations de la cyclododécanone et du dérivé étudié.

La conformation du cyclododécane permet de distinguer trois types de méthylènes indépendants compte tenu des éléments de symétrie. Ces méthylènes sont notés. I. II et II' sur la Fig 2a. On sait d'autre part, que cette conformation est caractérisée par huit interactions transannullaires de 2 Å environ représentées en pointillés sur la Fig 2a (valeur moyenne observée dans l'HPD: 2.06 Å). D'où, puisqu'il est possible

FIG 2. Conformations du cyclododécane et des trois isomères de la cyclododécanone.

FIG 3. Empilement des molécules dans la cristal, perpendiculairement au plan (\bar{a}, \bar{b}) .

de distinguer trois isomères de conformation pour la cyclododécanone selon que le carbonyle est situé en I, II ou II' (CI, CII et CII' sur la Fig 2b), on peut admettre que les isomères stables de cette cétone seront CII et CII' puisqu'ils comportent deux interactions transannullaires de moins que l'isomère CI. On peut de plus penser que puisque la conformation du cycle est voisine de la symétrie 422, les isomères CII, et CII' auront la même stabilité, les méthylènes II et II' étant presque équivalents. Or dans l'HPD, le carbone porteur du groupement phosphonate est du type I c'est donc qu'il y a eu changement de conformation lors de la réaction d'addition du phosphite diméthylique sur le carbonyle, comme nous l'avions déjà constaté pour la cyclodécanone.¹⁶ En reprenant les arguments cités dans cette précédente étude, nous pouvons envisager raisonnablement que ce sont les molécules CI qui réagissent pour former l'hydroxyphosphonate, l'équilibre CI/CII/CII' étant progressivement déplacé au profit de la forme CI, par suite de la consommation de cette dernière dans la réaction. Il faut signaler que la position du groupement phosphonate déterminée ici est en accord avec les résultats de Benezra² qui, constatant l'absence quasi totale de dérivé trans lors de la deshydratation de l'hydroxy-1 cyclododécylphosphonate diméthylique par SOCl₂/pyridine avait conclu que le carbone lié au phosphore était de type I.

Empilement

Chaque molécule est liée à son homologue centrosymétrique par deux ponts formés par deux liaisons hydrogène (2:69 Å) de même nature que celles déjà signalées dans des études antérieures.^{1, 4, 16, 17} La cohésion du cristal est assurée en outre par des contacts de van der Waals classiques (3:60 Å; 3:90 Å). Le cristal consiste en motifs dimères alignés dans la direction [1] 0] comme le montre la Fig 3.

PARTIE EXPERIMENTALE

Préparation—Données cristallographiques

Ce composé a été préparé par Benezra² selon une méthode décrite par Abramov.³ II a été caractérisé par son analyse, son spectre de RMN et son spectre d'absorption dans l'infra-rouge.²

L'évaporation lente à l'air d'une soln d'hydroxy-1 cyclododécylphosphonate diméthylique dans le benzène, provoque la formation de deux types de cristaux. Les premiers de dimensions moyennes $5 \times 2 \times 1$ mm, blanchissent rapidement à l'air et ne conservent que leurs formes extérieures. L'examen aux rayons X montre que le réseau cristallin est alors désorganisé. Il s'agit probablement d'un solvate du benzène dans l'hydroxy-1 cyclododécylphosphonate diméthylique. Les autres, plus petits ($1 \times 0.4 \times 0.4$ mm) sont stables et brillants. L'étude radiocristallographique a été réalisée avec des cristaux du second type.

Le système cristallin et les paramètres de la maille ont été déterminés à partir des clichés de Rétigraphe et de Précession avec le rayonnement K α du Cuivre. La densité a été mesurée par flottaison dans une soln de NaNO₃ aq C₁₄H₂₉O₄P (292·3).

Système Triclinique $a = 13\cdot10 \pm 0.01 \text{ Å}; b = 11\cdot74 \pm 0.01 \text{ Å}; c = 6.080 \pm 0.006 \text{ Å}$ $\alpha = 109\cdot53 \pm 0.15^{\circ}; \beta = 112\cdot77 \pm 0.15^{\circ}; \gamma = 87\cdot25 \pm 0.15^{\circ}$ $V = 809 \text{ A}^{3}$ Densité observée: $1\cdot22 \pm 0.01 \text{ g.cm}^{-3}$ Nombre de molécules par maille: Z = 2Densité calculée: $1\cdot22 \text{ g.cm}^{-3}$ Groupe Spatial: P1 ou PT Enregistrement des intensités

Il a été réalisé sur diffractomètre automatique Pailred à la longueur du cuivre ($\lambda K\alpha = 1.54178$ Å). Les conditions d'enregistrement sont analogues à celles évoquées dans une étude précédente.⁴ Le cristal utilisé, allongé selon \vec{c} avait pour dimensions $0.2 \times 0.3 \times 1$ mm. 1241 réflexions indépendantes ont été mesurées, correspondant aux strates HK0, HK1, ... HK7 du réseau réciproque et correspondant à une inclinaison maximale du compteur de 53°. Les intensités enregistrées ont été corrigées des facteurs de Lorentz et de polarisation. Les effets de l'absorption ont été négligés ($\mu CuK\overline{\alpha} = 16$ cm⁻¹). La mise à l'échelle absolue des intensités a été effectuée avec l'ensemble des mesures tandis que l'affinement des positions atomiques et des facteurs d'agitation thermique n'a été fait qu'avec l'ensemble des réflexions dont l'écart-type relatif⁴ était inférieur ou égal à 0.2. Soit 886 réflexions indépendantes.

Remerciements—Nous remercions vivement le Professeur G. Ourisson et le Dr. Claude Benezra qui nous ont fournis un échantillon du produit étudié.

BIBLIOGRAPHIE

- ¹ Ce travail a fait l'objet d'une note préliminaire: G. Samuel et R. Weiss, *Tetrahedron Letters* 33, 2803 (1969)
- ² C. Benezra, Thèse, Strasbourg (1966)
- ³ V. S. Abramov, Dokl. Akad. Nauk. SSSR 73, 487 (1950); Chem. Abstr. 54, 2855h (1951)
- ⁴ G. Samuel et R. Weiss, Tetrahedron, 26, 3005 (1970).
- ⁵ J. Karle, Acta Cryst. 21, 849 (1966)
- ⁶ J. Karle et H. Hauptmann, *Ibid.* 6, 473 (1953)
- ⁷ Adaptation locale du programme de C. K. Johnson, ORTEP ORNL 3794 (1965)
- ⁸ H. Führer et H. H. Gunthard, Helv. Chim. Acta 48, 236 (1965)
- ⁹ J. D. Dunitz et H. M. M. Shearer, Ibid. 43, 18 (1960)
- ¹⁰ J. D. Dunitz et H. P. Weber, *Ibid.* 47, 1138 (1964)
- ¹¹ J. Dehli et P. Groth, Acta Chem. Scand. 23, 587 (1969)
- ¹² L. M. Trefonas et J. Couvillon, J. Am. Chem. Soc. 85, 3184 (1963)
- ¹³ K. B. Wiberg, *Ibid.* 87, 1070 (1965)
- ¹⁴ M. Bixon et S. Lifson, *Tetrahedron* 23, 769 (1967)
- ¹⁵ W. Klyne et V. Prelog, Experientia 16, 521 (1960)
- ¹⁶ G. Samuel et R. Weiss, Tetrahedron, 26, 2995 (1970).
- ¹⁷ G. Samuel et R. Weiss, Tetrahedron Letters 40, 3529 (1969)
- ¹⁸ Une liste des $|F_0|$ et F_c peut être obtenue sur demande

3958